Skip to main content

Electronic configuration of ions of transition elements

Electronic configuration of ions of transition elements: 

In first transition series atom loses 4s electron before they lose 3d electron.

the reason is that when electron goes in 3d orbital the energy of 3d orbital became less than 4s orbital .In other words 3d orbital became more stable than 4s.

once both the electron are lost from 4s orbital than electron are lost from 3d orbital.

for eg. 
 fe (26)         [ Ar] 4s^2  3d^6

[fe^3+]         [At]  3d^5   4s^0

Question

1 Write down electronic configuration of elements with atomic no.  24,46,74,57.
 Ans.
electronic configuration of elements as:
1.  cr(24)          [Ar] 4s^1 3d^5

2.   pd(46)         [kr]  5s^0 4d^10

3.   W(74)          [xe]  4f^14  6s^2  5d^4

4.    la(57)           [xe ]  6s^2  5d^1

Question 

2 cu^2+ is more stable than cu^+1  ? 
Ans 

cu^2+ cupric 

cu^+  cuprous

cu^2+ compounds are more stable due to high lattice energy in solid state and high hydration energy in solution. and cu^2+size is small attain high energy as compare to cu^+1 .hence cu^2+  is more stable than cu^+1

Comments

Popular posts from this blog

Bsc subject chemistry (inorganic sem-1) complete notes

                                              INORGANIC CHEMISTRY                                BSC SEMESTER -1                                                                                                                                                                                   section A         ...

Electronegativity scales and disadvantage of scales and its nunericals

Electronegativity scales: 1.Pauling scale of electronegativity: in diatomic molecule (A-B) ,the bond formed between two atoms A and  B will be intermediate between  pure Covalent (A-B)  and pure ionic character,  the bond between A and B will be  strong than bond energy increased. if bond (A-B) has been purily covalent than bond energy can be calculated as average bond energy of bond (A-A)  and bond (B-B).     that means it is equal to bond energy of bond (A-B) E(A-B)  = 1/2[ E(A-A) +E(B-B) ] however experiemental value of bond (A-B)  more than this value  because of difference in electronegativity  of A and B the difference ∆ is given by simple expression ∆ = E(A-B) - 1/2 [E(A-A) +E(B-B) ] where E(A-B)  is experimental value of bond energy. if Ҳ(A)  and  Ҳ(B) are the electronegative of elements A and B than Ҳ(A) - Ҳ(B) = 0.18√∆ for numerical ∆ = E(A-B)  -[√(E(A-A) ×E(B-B) )] Disadvan...

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the rad...