Skip to main content

pauli exclusive principal

Pauli exclusive principal:

It state that an orbital cannot accomodate more than two electron .they should be opposite spin.

Question:
Define pauli exclusive principal on the basis of quantum number ?
ans.
Two electron in an atom cannot be completly identically i. e no two electron in an atom can have same value all the four quantum no.
          

from picture


for left side spin                      for right side spin
n=4                                             n=4    
l=0, 1,2,3                                    l=0, 1,2,3
for s than                                  for s than
l=0                                               l=0           
m=0                                             m=0
s=+1/2                                          s=-1/2

Energy is inversely proportional to Stability. which shown in picture. 
                 
                

Comments

Popular posts from this blog

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the radial wave function can be represented by plotting radial function R(r)  apart distance(r)

Radial probability distribution curves

Radial probhjjhajajbability distribution curves:  The probability of finding the electron is given by the quantity  sie^2.By radial probability us probability of finding the electron within small Radial space around the nucleus. volume of spherical shell between radius r and r+dr =4πr^2 and probability of finding the electron will be 4πr^2dr sie^2. radial probability distribution curves are obtained by plotting radial probability at various distance from the nucleus . 1.Radial probability distribution curves for S orbital n=1, l= 0. distance from nucleus here A° is called angstrom. the probability of finding of electron in a shell is maximum at distance r=r° (r not)  which is 0.529 A° for H atom. diagram shows that probability plot for 2s has(two region of high probability)  or (two peaks)  separated by node. we conclude that  no.  of high probability region in S orbital = n no.  of node = ( n-1) 

Physical significance of sie and sie^2

Physical significance of sie and sie^2  The wave function sie has no physical significance,  it simply represents amplitude of wave   while square of amplitude sie^2 represent intensity of electron.  i. e sie ^2 gives probability of finding the electron in space .p the space is called atomic orbital  A zero value of sie^2 means probability of finding the electron is zero and high value of sie^2 means greater chances of finding the electron .  the value of sie^2 lies between 0&1. if sie^2 =1   100℅  sie^2=0    0℅