Skip to main content

Question Answer

Question Answer

1.In an atom first shell has 2 electron  second shell has 8 electron third shell have 18 electron
. explain this arrangement on the basis of quantum number?

Answer

K shell          no. of orbital   total no. of electrons

n=1                                               
      l=0                 1s                               2
      m=0
      (s=-1/2, +1/2)

L shell
n=2                                                 
      l=0                  2s                               2
      m=0
      (s=-1/2, +1/2)

       l=1                2p                                   6
      m=-1 (s=-1/2, +1/2)
       m=0 (s=-1/2, +1/2)
       m=1 (s=-1/2, +1/2)
M shell
n=3                                                 
      l=0                   3s                                  2
      m=0
      (s=-1/2, +1/2)

       l=1                  3p                                  6
      m=-1 (s=-1/2, +1/2)
       m=0 (s=-1/2, +1/2)
       m=1 (s=-1/2, +1/2)
      
       l=2                    3d                                 10
      m=-2 (s=-1/2, +1/2)
       m=-1(s=-1/2, +1/2)
       m=0 (s=-1/2, +1/2)
       m=1 (s=-1/2, +1/2)
        m=2 (s=-1/2, +1/2)

  N shell

      n=4                                               
      l=0                    4s                                 2
      m=0
      (s=-1/2, +1/2)

       l=1                   4p                                  6
      m=-1 (s=-1/2, +1/2)
       m=0 (s=-1/2, +1/2)
       m=1 (s=-1/2, +1/2)
      
       l=2                     4d                                 10
      m=-2 (s=-1/2, +1/2)
       m=-1(s=-1/2, +1/2)
       m=0 (s=-1/2, +1/2)
       m=1 (s=-1/2, +1/2)
        m=2 (s=-1/2, +1/2)
     
        l=3                     4f                                14
       m=-3(s=-1/2, +1/2)
        m=-2(s=-1/2, +1/2)
        m=-1(s=-1/2, +1/2)
        m=0  (s=-1/2, +1/2)
       m=-1(s=-1/2, +1/2)
        m=2 (s=-1/2, +1/2)
        m=3 (s=-1/2, +1/2)

2.calculate effective nuclear charge (zeff) felt by 2p electron of oxygen?

ans.
 O             1s^2    2s^2  2p^4
(8)             (n-1)        n

S=  5×0.35 +2×0.85
S=  1.75+1.70
S= 3.45
Zeff=A-S
       = 8-3.45
       =  4.55

3.calculate effective nuclear charge (zeff) felt by 3p electron of chlorine?

ans.
 Cl          1s^2      2s^2  2p^6     3s^2  3p^5
(17)        (n-2)       ( n-1)                  n

S=  6×0.35 + 8× 0.85   +  2× 1.00
S =  2.10 + 6.80  + 2.00
S= 10.9
Z= 17-10.9= 6.1

4.calculate effective nuclear charge (zeff) felt by 4s electron of pottasium?
ans

 Cl          1s^2  2s^2  2p^6     3s^2  3p^5      4s^1
(17)                (n-2)                    (  n-1)              n

S=  0×0.35 + 8× 0.85  +  10× 1.00
S= 0+6.8+10.00
S=16.8
Zeff= 19-16.8
      =   2.2



     
       

Comments

Popular posts from this blog

Radial probability distribution curves

Radial probhjjhajajbability distribution curves:  The probability of finding the electron is given by the quantity  sie^2.By radial probability us probability of finding the electron within small Radial space around the nucleus. volume of spherical shell between radius r and r+dr =4πr^2 and probability of finding the electron will be 4πr^2dr sie^2. radial probability distribution curves are obtained by plotting radial probability at various distance from the nucleus . 1.Radial probability distribution curves for S orbital n=1, l= 0. distance from nucleus here A° is called angstrom. the probability of finding of electron in a shell is maximum at distance r=r° (r not)  which is 0.529 A° for H atom. diagram shows that probability plot for 2s has(two region of high probability)  or (two peaks)  separated by node. we conclude that  no.  of high probability region in S orbital = n no.  of node = ( n-1) 

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the rad...

Electronegativity scales and disadvantage of scales and its nunericals

Electronegativity scales: 1.Pauling scale of electronegativity: in diatomic molecule (A-B) ,the bond formed between two atoms A and  B will be intermediate between  pure Covalent (A-B)  and pure ionic character,  the bond between A and B will be  strong than bond energy increased. if bond (A-B) has been purily covalent than bond energy can be calculated as average bond energy of bond (A-A)  and bond (B-B).     that means it is equal to bond energy of bond (A-B) E(A-B)  = 1/2[ E(A-A) +E(B-B) ] however experiemental value of bond (A-B)  more than this value  because of difference in electronegativity  of A and B the difference ∆ is given by simple expression ∆ = E(A-B) - 1/2 [E(A-A) +E(B-B) ] where E(A-B)  is experimental value of bond energy. if Ҳ(A)  and  Ҳ(B) are the electronegative of elements A and B than Ҳ(A) - Ҳ(B) = 0.18√∆ for numerical ∆ = E(A-B)  -[√(E(A-A) ×E(B-B) )] Disadvan...