Skip to main content

Question answer

Question answer

4.calculate zeff 4s electron of potassium? 
ans
Zn
(30)     1s^2 2s^2 2p^6   3s^2 3p^6 3d^10   4s^2
                    n-2                           n-1                    n

S= 1×0.35 +18×0.85 + 10×1.00
S=  0.35+15.30+10.00
S= 25.65

zeff=A-S
       = 30-25.65=4.35

5.calculate zeff 4s electron of iron? 
ans
Fe
(26)        1s^2 2s^2 2p^6   3s^2 3p^6 3d^6  4s^2
                    n-2                           n-1                    n

S= 1×0.35 +14×0.85 + 10×1.00
S=  0.35+11.9+10.00
S= 22.25

Zeff= 26-22.25=3.75

6.calculate zeff 3d electron of zinc? 
ans
Zn
(30)        1s^2 2s^2 2p^6 3s^2 3p^6   3d^10   4s^2
                                                                    n
        here 4s (not encluding in screening effect) 
according to rule no. 6

S= 9×0.35  + 18×1.00
S= 21.15

Zeff= 30-21.15=8.85

7.calculate zeff 3d electron of iron? 
ans
fe
(26)        1s^2 2s^2 2p^6 3s^2 3p^6   3d^6   4s^2
                                                                    n
        

S= 5×0.35  + 18×1.00
S= 19.75

Zeff= 26-19.75=6.25


8.calculate zeff 4d electron of silver? 
ans
Ag
(47) 1s^2 2s^2 2p^6 3s^2 3p^6 3d^10 4s^2 4p^6
                                    4d^10   4s^1
                                        n                            
        

S= 9×0.35  + 36×1.00
S= 39.15

Zeff= 47-39.15=7.85

9. calculate zeff 3d electron of cerium? 
ans
Ce
(58)  1s^2 2s^2 2p^6 3s^2 3p^6 3d^10 4s^2                              4p^6 4d^10    4f^2   5s^2 5p^6 6s^2
                                              n                      
        
S= 1×0.35  + 46×1.00
S= 46.35

Zeff= 58-46.35=11.65






Comments

Popular posts from this blog

Radial probability distribution curves

Radial probhjjhajajbability distribution curves:  The probability of finding the electron is given by the quantity  sie^2.By radial probability us probability of finding the electron within small Radial space around the nucleus. volume of spherical shell between radius r and r+dr =4πr^2 and probability of finding the electron will be 4πr^2dr sie^2. radial probability distribution curves are obtained by plotting radial probability at various distance from the nucleus . 1.Radial probability distribution curves for S orbital n=1, l= 0. distance from nucleus here A° is called angstrom. the probability of finding of electron in a shell is maximum at distance r=r° (r not)  which is 0.529 A° for H atom. diagram shows that probability plot for 2s has(two region of high probability)  or (two peaks)  separated by node. we conclude that  no.  of high probability region in S orbital = n no.  of node = ( n-1) 

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the rad...

Electronegativity scales and disadvantage of scales and its nunericals

Electronegativity scales: 1.Pauling scale of electronegativity: in diatomic molecule (A-B) ,the bond formed between two atoms A and  B will be intermediate between  pure Covalent (A-B)  and pure ionic character,  the bond between A and B will be  strong than bond energy increased. if bond (A-B) has been purily covalent than bond energy can be calculated as average bond energy of bond (A-A)  and bond (B-B).     that means it is equal to bond energy of bond (A-B) E(A-B)  = 1/2[ E(A-A) +E(B-B) ] however experiemental value of bond (A-B)  more than this value  because of difference in electronegativity  of A and B the difference ∆ is given by simple expression ∆ = E(A-B) - 1/2 [E(A-A) +E(B-B) ] where E(A-B)  is experimental value of bond energy. if Ҳ(A)  and  Ҳ(B) are the electronegative of elements A and B than Ҳ(A) - Ҳ(B) = 0.18√∆ for numerical ∆ = E(A-B)  -[√(E(A-A) ×E(B-B) )] Disadvan...