Skip to main content

Hybridisation, types of hybridisation and it's conditions

Hybridisation:  the phenomenon of intermining of various orbital which differ slightly in energy to give rise to new orbital of indentical energy is called hybridisation.

hybrid orbital form stronger covalent bond because they are more directional.

types of hybridisation: depending upon the no.  and type of hyberdisation, hybridisation can be of sp, sp^2, sp^3, sp^3d, sp^3d^2, sp^3d^3.

conditions for hybridisation:
1.orbital valence shell take part in hybridisation
2.orbital taking part in hybridisation should be of almost same energy.
3.orbital forming π bond do not take part in hybridisation.

shape of compounds

1.Shape of BeF2 (beryllium dichloride)

ground state
   Be
   (4)    1s^2 2s^2 2px 2py 2pz
excited state
   Be     1s^2 2s^1 2px^1 2py 2pz
                     { sp             }

since sp hybridisation takes place beF2 molecule is linear with bond angle 180°


 
                   


Comments

Popular posts from this blog

Radial probability distribution curves

Radial probhjjhajajbability distribution curves:  The probability of finding the electron is given by the quantity  sie^2.By radial probability us probability of finding the electron within small Radial space around the nucleus. volume of spherical shell between radius r and r+dr =4πr^2 and probability of finding the electron will be 4πr^2dr sie^2. radial probability distribution curves are obtained by plotting radial probability at various distance from the nucleus . 1.Radial probability distribution curves for S orbital n=1, l= 0. distance from nucleus here A° is called angstrom. the probability of finding of electron in a shell is maximum at distance r=r° (r not)  which is 0.529 A° for H atom. diagram shows that probability plot for 2s has(two region of high probability)  or (two peaks)  separated by node. we conclude that  no.  of high probability region in S orbital = n no.  of node = ( n-1) 

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the rad...

Electronegativity scales and disadvantage of scales and its nunericals

Electronegativity scales: 1.Pauling scale of electronegativity: in diatomic molecule (A-B) ,the bond formed between two atoms A and  B will be intermediate between  pure Covalent (A-B)  and pure ionic character,  the bond between A and B will be  strong than bond energy increased. if bond (A-B) has been purily covalent than bond energy can be calculated as average bond energy of bond (A-A)  and bond (B-B).     that means it is equal to bond energy of bond (A-B) E(A-B)  = 1/2[ E(A-A) +E(B-B) ] however experiemental value of bond (A-B)  more than this value  because of difference in electronegativity  of A and B the difference ∆ is given by simple expression ∆ = E(A-B) - 1/2 [E(A-A) +E(B-B) ] where E(A-B)  is experimental value of bond energy. if Ҳ(A)  and  Ҳ(B) are the electronegative of elements A and B than Ҳ(A) - Ҳ(B) = 0.18√∆ for numerical ∆ = E(A-B)  -[√(E(A-A) ×E(B-B) )] Disadvan...