Skip to main content

Linear combination of atomic orbital, Molecular orbital theory, Difference between bonding & anti bonding moleculer orbital.

Linea combination of atomic orbital 
molecular orbital are formed by combination of atomic orbital  if ꌏ(A)  andꌏ(B)  are the wave function of atomic orbital of two combining atomic A and B  then according  to Linea combination of atomic orbital, these two wave function can be added or can be substracted .that means there are two modes of interaction (symmetric and antisymmetric) 

We know

ꌏ(s)  = ꌏ(A) +ꌏ(B) 
ꌏ(a) = ꌏ(A)- ꌏ(B)

ꌏ(s)  and ꌏ(a)  represent wave function of bonding and antibonding moleculer orbital.

the formation of moleculer orbital ꌏ(s)  and
ꌏ(a)  from two atomic orbital ꌏ(A) and ꌏ(B)  is represented as

Molecular orbital theory (MO)  theory:
main points of mo theory are:
1.whwn atomic orbital combine they formed molecular orbital.
2.Number of molecular orbital formed is equal to number of atomic orbital combine.
3.atomic orbital are uninuclear  while molecular orbital  are polynuclear.
4.The various molecular orbital are arranged in order of in increasing energy.
5.molecular orbital are designed as ؎ and π.

when atomic orbital combine they give rise to molecular orbital .the M. O are two types:
1.Bonding molecular orbital.
2.antiBondingmolecular orbital.

The molecular orbital formed by additive method, are called Bonding molecular orbital  .The molecular orbital formed by susbsration method are called antibonding molecular orbital.

Difference between B.M.O and A. B. M. O

Bonding molecular orbital:
1.they formed by addition method.
ꌏ(s)  = ꌏ(A) +ꌏ(B)  
2 they are formed when lobes of combining atomic orbital lie in same plane. 
3.The electron present in bonding molecular orbital contribute to attraction. 
4.Because of attraction forces, bonding molecular orbital are of lower energy

Antibonding molecular orbital: 
1.they formed by substration method.
ꌏ(s)  = ꌏ(A) -ꌏ(B)  
2 they are formed when lobes of combining atomic orbital lie in different plane. 
3.The electron present in bonding molecular orbital contribute to repulsion. 
4.Because of attraction forces, bonding molecular orbital are of higher energy. 


Comments

Popular posts from this blog

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the rad...

Radial probability distribution curves

Radial probhjjhajajbability distribution curves:  The probability of finding the electron is given by the quantity  sie^2.By radial probability us probability of finding the electron within small Radial space around the nucleus. volume of spherical shell between radius r and r+dr =4πr^2 and probability of finding the electron will be 4πr^2dr sie^2. radial probability distribution curves are obtained by plotting radial probability at various distance from the nucleus . 1.Radial probability distribution curves for S orbital n=1, l= 0. distance from nucleus here A° is called angstrom. the probability of finding of electron in a shell is maximum at distance r=r° (r not)  which is 0.529 A° for H atom. diagram shows that probability plot for 2s has(two region of high probability)  or (two peaks)  separated by node. we conclude that  no.  of high probability region in S orbital = n no.  of node = ( n-1)