Skip to main content

Electronic configuration of Lanthanoids & Bohr's bury's rule

Electronic configuration of Lanthanoids;

ce (58) to lu(71)  electronic configuration of lanthanoid cannot be predicted corrected by Aufbau principal.

for eg. after filled 6s orbital in barium the next electron in lanthanum should enter 4f orbital in fact it does not happen and next electron goes in 5d orbital. so electronic configuration of lanthanoid[ 57]   |xe|6s^2 5d^1.


Electronic configuration of Actinoids;

electronic configuration of actinoids cannot be predict correctly by aufbau principal

for eg.  After filling 7s orbital in radium(88)  the next electron in actinium should 5f orbital. in fact it does not happen and next electron goes in 6d orbital .so electronic configuration of actinium[89]  |Rn|7s^2 6d^1.


 Bohr's bury's rule (n+l)  rule: 

According to this rule the energy of an orbital depends upon (n+l)  value, the orbital with lower value of (n+l)  will be lower energy  and will filled first.

for eg.  
              3d                     4s
            n=3                   n=4
             l=2                     l=0
        n+l=5                n+l=4

since (n+l)  value is less for 4s  orbital is lower energy is filled earlier than 3d.

if (n+l)  comes out to be same than orbital will lower value of 'n' will be lower energy and is filled first.

for eg.     3d                   4p
              n=3                   n=4
              l=2                    l=1
         n+l = 5               n+l= 5
since ( n+l) value comes out be same for 3d and 4p orbital but value of n is less for 3d orbital  so 3d orbital of lower  energy and is filled earlier than 4p.


Comments

Popular posts from this blog

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the radial wave function can be represented by plotting radial function R(r)  apart distance(r)

Physical significance of sie and sie^2

Physical significance of sie and sie^2  The wave function sie has no physical significance,  it simply represents amplitude of wave   while square of amplitude sie^2 represent intensity of electron.  i. e sie ^2 gives probability of finding the electron in space .p the space is called atomic orbital  A zero value of sie^2 means probability of finding the electron is zero and high value of sie^2 means greater chances of finding the electron .  the value of sie^2 lies between 0&1. if sie^2 =1   100℅  sie^2=0    0℅

Linear combination of atomic orbital, Molecular orbital theory, Difference between bonding & anti bonding moleculer orbital.

Linea combination of atomic orbital  molecular orbital are formed by combination of atomic orbital  if ꌏ(A)  andꌏ(B)  are the wave function of atomic orbital of two combining atomic A and B  then according  to Linea combination of atomic orbital, these two wave function can be added or can be substracted .that means there are two modes of interaction (symmetric and antisymmetric)  We know ꌏ(s)  = ꌏ(A) +ꌏ(B)  ꌏ(a) = ꌏ(A)- ꌏ(B) ꌏ(s)  and ꌏ(a)  represent wave function of bonding and antibonding moleculer orbital. the formation of moleculer orbital ꌏ(s)  and ꌏ(a)  from two atomic orbital ꌏ(A) and ꌏ(B)  is represented as Molecular orbital theory (MO)  theory: main points of mo theory are: 1.whwn atomic orbital combine they formed molecular orbital. 2.Number of molecular orbital formed is equal to number of atomic orbital combine. 3.atomic orbital are uninuclear  while molecular orbital  are polynuclear. 4.The various molecular orbital are arranged in order of in increas