Skip to main content

Chapter 02 periodic table and atomic periodicity or properties

Chapter 02
 periodic table and atomic periodicity or properties:



Modern periodic table:  the table in which elements are arrange in order of increasing atomic number.

Modern periodic law: physical and chemical properties of elements are periodic function of their atomic number.

periodic function: repelition of properties after certain interval of time.

periodicity of elements: the repelition of properties after certain interval of time.

the elements repeats their properties because their valence shell electron configuration repeats.

 eg.   li     2   1
         Na   2   8   1
          k     2   8   8   1

114 elements are known today. for their systematic study they have been classified into group and period.

Group :vertical column are called group there are 18 vertical column. so their are 18 groups.

Periods:  horizontal rows are called periods there are 7 horizontal rows. so their are 7 periods  .

A/c to periods no. of elements

1 period  2 elements
2 period   8 elements
3 period   8 elements
4 period   18 elements
5 period   18 elements
6 period    32 elements
7 period    32 elements

the elements constituent groups 1,2,13,14,15,16,17,18 are called normal elements or representation elements.

the elements of 3,4,5,6,7,8,9,10,11,12 are called transistion elements. because they show transistion (change)  in property.

# from highly +ve   s block to least + ve P block

 Two rows of elements which are placed at the bottom of periodic table are called lanthanoids and actinoids.






Comments

Popular posts from this blog

Radial probability distribution curves

Radial probhjjhajajbability distribution curves:  The probability of finding the electron is given by the quantity  sie^2.By radial probability us probability of finding the electron within small Radial space around the nucleus. volume of spherical shell between radius r and r+dr =4πr^2 and probability of finding the electron will be 4πr^2dr sie^2. radial probability distribution curves are obtained by plotting radial probability at various distance from the nucleus . 1.Radial probability distribution curves for S orbital n=1, l= 0. distance from nucleus here A° is called angstrom. the probability of finding of electron in a shell is maximum at distance r=r° (r not)  which is 0.529 A° for H atom. diagram shows that probability plot for 2s has(two region of high probability)  or (two peaks)  separated by node. we conclude that  no.  of high probability region in S orbital = n no.  of node = ( n-1) 

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the rad...

Electronegativity scales and disadvantage of scales and its nunericals

Electronegativity scales: 1.Pauling scale of electronegativity: in diatomic molecule (A-B) ,the bond formed between two atoms A and  B will be intermediate between  pure Covalent (A-B)  and pure ionic character,  the bond between A and B will be  strong than bond energy increased. if bond (A-B) has been purily covalent than bond energy can be calculated as average bond energy of bond (A-A)  and bond (B-B).     that means it is equal to bond energy of bond (A-B) E(A-B)  = 1/2[ E(A-A) +E(B-B) ] however experiemental value of bond (A-B)  more than this value  because of difference in electronegativity  of A and B the difference ∆ is given by simple expression ∆ = E(A-B) - 1/2 [E(A-A) +E(B-B) ] where E(A-B)  is experimental value of bond energy. if Ҳ(A)  and  Ҳ(B) are the electronegative of elements A and B than Ҳ(A) - Ҳ(B) = 0.18√∆ for numerical ∆ = E(A-B)  -[√(E(A-A) ×E(B-B) )] Disadvan...