Skip to main content

Factors affecting Ionisation energy

Factors affecting Ionisation energy:

1.  Effective nuclear charge: More is the effective nuclear charge ,more will be the attraction for valence electron, more energy is required to remove electron and hence more will be the    I. E.

2. Size of atom:  smaller is the size of atom more will be the attraction for valence electron more energy is required to remove electron and hence more will be I. E .

3.Screening effect of inner electrons:  the electron present between the nucleus and valence shell, at as screen this is called screening effect, more is the screening effect lesser will be the I. E.

4.Removal of s and p electron:  since p electron are away as compare to s electron condition of same shell .so p electron can be removal more easily than s electron.

5. Electronic configuration:  certain electronic configuration represent more stable arrangement for eg . exactly half filled and completely filled configuration are more stable.  so more energy is required to remove electron from stable configuration.



Comments

Popular posts from this blog

Electronegativity scales and disadvantage of scales and its nunericals

Electronegativity scales: 1.Pauling scale of electronegativity: in diatomic molecule (A-B) ,the bond formed between two atoms A and  B will be intermediate between  pure Covalent (A-B)  and pure ionic character,  the bond between A and B will be  strong than bond energy increased. if bond (A-B) has been purily covalent than bond energy can be calculated as average bond energy of bond (A-A)  and bond (B-B).     that means it is equal to bond energy of bond (A-B) E(A-B)  = 1/2[ E(A-A) +E(B-B) ] however experiemental value of bond (A-B)  more than this value  because of difference in electronegativity  of A and B the difference ∆ is given by simple expression ∆ = E(A-B) - 1/2 [E(A-A) +E(B-B) ] where E(A-B)  is experimental value of bond energy. if Ҳ(A)  and  Ҳ(B) are the electronegative of elements A and B than Ҳ(A) - Ҳ(B) = 0.18√∆ for numerical ∆ = E(A-B)  -[√(E(A-A) ×E(B-B) )] Disadvan...

Radial probability distribution curves

Radial probhjjhajajbability distribution curves:  The probability of finding the electron is given by the quantity  sie^2.By radial probability us probability of finding the electron within small Radial space around the nucleus. volume of spherical shell between radius r and r+dr =4πr^2 and probability of finding the electron will be 4πr^2dr sie^2. radial probability distribution curves are obtained by plotting radial probability at various distance from the nucleus . 1.Radial probability distribution curves for S orbital n=1, l= 0. distance from nucleus here A° is called angstrom. the probability of finding of electron in a shell is maximum at distance r=r° (r not)  which is 0.529 A° for H atom. diagram shows that probability plot for 2s has(two region of high probability)  or (two peaks)  separated by node. we conclude that  no.  of high probability region in S orbital = n no.  of node = ( n-1) 

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the rad...