Skip to main content

shapes of many compounds due hybridisation

shapes of many compounds due hyberdisation

1.shape of BF3 (boron trifluoride)

Ground state
 B
(5)    1s^2  2s^2  2px^1  2py^0 2pz^0

excited state

    1s^2  2s^1  2px^1  2py^1  2pz^0
                { sp2 hybridisation}
since sp2 hybridisation takes place. so BF3 molecule triangular with bond angle 120°
triangular or trigonal planer

2.shape of CH4 (Methane)

Ground state
 C
(5)    1s^2  2s^2  2px^1  2py^1 2pz^0

excited state

    1s^2  2s^1  2px^1  2py^1  2pz^1
                { sp3  hybridisation}
since sp3 hybridisation takes place. so CH4 molecule tetrahedral with bond angle 109°.28'

3. shape of PF5 (phosphorus pentafluorine)

Ground state
 P
(15)    3s^2  3px^1  3py^1 3pz^1 3d^0

excited state

          3s^2  3px^1  3py^1  3pz^1  3d^1
                      { sp3d hybridisation}
since sp3d hybridisation takes place. so PF5 molecule is tringonal bipyramidal.

equitorial 120°
axial 90°
axial bond are slightly larger than equatorial bond because axial bond forces greater repulsion than equitorial. so PF5 is quite reactive.

6.shape of SF6 (sulphur hexafluoride)

Ground state
 S
(16)   3s^2  3px^2  3py^1 3pz^1 3d^0

excited state

          3s^2  3px^1  3py^1  3pz^1  3d^2
                      { sp3d2 hybridisation}
since sp3d hybridisation takes place. so SF6 molecule is Octahedral with  all bond angle 90°.

so SF6 is no reactive

Comments

Popular posts from this blog

Radial probability distribution for p and d orbital, radial wave functions

Radial probability distribution for p and d orbital Radial and Angular wave function:  the radial part of wave function depends upon quantum no.  n and  l  and gives the distribution of electron w. r. t distance .it is governed mainly exponential term     e^-Zr/na°(a not)   here  e   based on natural log.  Z   Atomic number r     distance from nucleus  n    principal quantum no. or radial quantum           no.  a°    0.529A° for hydrogen  ( Bohr radii)  the exact mathematical expression for radial part of wave function for 1s or 2s and 2p orbitals. n= 1 ,l=0 s orbital    R(r) =2× (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=0 2s orbital    R(r) = (z/a°) ^3/2 ×(2-zr/a°) ×e^-zr/2a° n= 2 ,l=1 2p orbital    R(r) = 1√3×(z/2a°) ^3/2 ×(zr/a°) ×e^-zr/2a ° the radial wave function can be represented by plotting radial function R(r)  apart distance(r)

Physical significance of sie and sie^2

Physical significance of sie and sie^2  The wave function sie has no physical significance,  it simply represents amplitude of wave   while square of amplitude sie^2 represent intensity of electron.  i. e sie ^2 gives probability of finding the electron in space .p the space is called atomic orbital  A zero value of sie^2 means probability of finding the electron is zero and high value of sie^2 means greater chances of finding the electron .  the value of sie^2 lies between 0&1. if sie^2 =1   100℅  sie^2=0    0℅

Linear combination of atomic orbital, Molecular orbital theory, Difference between bonding & anti bonding moleculer orbital.

Linea combination of atomic orbital  molecular orbital are formed by combination of atomic orbital  if ꌏ(A)  andꌏ(B)  are the wave function of atomic orbital of two combining atomic A and B  then according  to Linea combination of atomic orbital, these two wave function can be added or can be substracted .that means there are two modes of interaction (symmetric and antisymmetric)  We know ꌏ(s)  = ꌏ(A) +ꌏ(B)  ꌏ(a) = ꌏ(A)- ꌏ(B) ꌏ(s)  and ꌏ(a)  represent wave function of bonding and antibonding moleculer orbital. the formation of moleculer orbital ꌏ(s)  and ꌏ(a)  from two atomic orbital ꌏ(A) and ꌏ(B)  is represented as Molecular orbital theory (MO)  theory: main points of mo theory are: 1.whwn atomic orbital combine they formed molecular orbital. 2.Number of molecular orbital formed is equal to number of atomic orbital combine. 3.atomic orbital are uninuclear  while molecular orbital  are polynuclear. 4.The various molecular orbital are arranged in order of in increas